Copied to
clipboard

G = C22×He33C4order 432 = 24·33

Direct product of C22 and He33C4

direct product, non-abelian, supersoluble, monomial

Aliases: C22×He33C4, C628Dic3, C62.48D6, He38(C22×C4), (C2×C62).13S3, (C22×He3)⋊7C4, (C23×He3).5C2, (C2×He3).37C23, C323(C22×Dic3), C23.3(He3⋊C2), (C22×He3).35C22, (C2×He3)⋊7(C2×C4), (C3×C6)⋊3(C2×Dic3), C6.50(C22×C3⋊S3), C6.19(C2×C3⋊Dic3), (C3×C6).47(C22×S3), C3.2(C22×C3⋊Dic3), (C22×C6).18(C3⋊S3), (C2×C6).14(C3⋊Dic3), C2.2(C22×He3⋊C2), C22.11(C2×He3⋊C2), (C2×C6).59(C2×C3⋊S3), SmallGroup(432,398)

Series: Derived Chief Lower central Upper central

C1C3He3 — C22×He33C4
C1C3C32He3C2×He3He33C4C2×He33C4 — C22×He33C4
He3 — C22×He33C4
C1C22×C6

Generators and relations for C22×He33C4
 G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, fcf-1=c-1, de=ed, df=fd, fef-1=e-1 >

Subgroups: 777 in 297 conjugacy classes, 123 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, C23, C32, Dic3, C12, C2×C6, C2×C6, C22×C4, C3×C6, C2×Dic3, C2×C12, C22×C6, C22×C6, He3, C3×Dic3, C62, C22×Dic3, C22×C12, C2×He3, C2×He3, C6×Dic3, C2×C62, He33C4, C22×He3, Dic3×C2×C6, C2×He33C4, C23×He3, C22×He33C4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C3⋊S3, C2×Dic3, C22×S3, C3⋊Dic3, C2×C3⋊S3, C22×Dic3, He3⋊C2, C2×C3⋊Dic3, C22×C3⋊S3, He33C4, C2×He3⋊C2, C22×C3⋊Dic3, C2×He33C4, C22×He3⋊C2, C22×He33C4

Smallest permutation representation of C22×He33C4
On 144 points
Generators in S144
(1 116)(2 113)(3 114)(4 115)(5 106)(6 107)(7 108)(8 105)(9 35)(10 36)(11 33)(12 34)(13 112)(14 109)(15 110)(16 111)(17 117)(18 118)(19 119)(20 120)(21 129)(22 130)(23 131)(24 132)(25 142)(26 143)(27 144)(28 141)(29 137)(30 138)(31 139)(32 140)(37 57)(38 58)(39 59)(40 60)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 88)(61 102)(62 103)(63 104)(64 101)(65 96)(66 93)(67 94)(68 95)(69 100)(70 97)(71 98)(72 99)(89 126)(90 127)(91 128)(92 125)(121 135)(122 136)(123 133)(124 134)
(1 77)(2 78)(3 79)(4 80)(5 58)(6 59)(7 60)(8 57)(9 72)(10 69)(11 70)(12 71)(13 73)(14 74)(15 75)(16 76)(17 82)(18 83)(19 84)(20 81)(21 90)(22 91)(23 92)(24 89)(25 103)(26 104)(27 101)(28 102)(29 93)(30 94)(31 95)(32 96)(33 97)(34 98)(35 99)(36 100)(37 105)(38 106)(39 107)(40 108)(41 112)(42 109)(43 110)(44 111)(45 116)(46 113)(47 114)(48 115)(49 120)(50 117)(51 118)(52 119)(53 124)(54 121)(55 122)(56 123)(61 141)(62 142)(63 143)(64 144)(65 140)(66 137)(67 138)(68 139)(85 134)(86 135)(87 136)(88 133)(125 131)(126 132)(127 129)(128 130)
(1 68 59)(2 60 65)(3 66 57)(4 58 67)(5 138 80)(6 77 139)(7 140 78)(8 79 137)(9 19 126)(10 127 20)(11 17 128)(12 125 18)(13 86 61)(14 62 87)(15 88 63)(16 64 85)(21 49 100)(22 97 50)(23 51 98)(24 99 52)(25 122 42)(26 43 123)(27 124 44)(28 41 121)(29 105 47)(30 48 106)(31 107 45)(32 46 108)(33 117 91)(34 92 118)(35 119 89)(36 90 120)(37 114 93)(38 94 115)(39 116 95)(40 96 113)(53 111 101)(54 102 112)(55 109 103)(56 104 110)(69 129 81)(70 82 130)(71 131 83)(72 84 132)(73 135 141)(74 142 136)(75 133 143)(76 144 134)
(1 73 19)(2 74 20)(3 75 17)(4 76 18)(5 64 71)(6 61 72)(7 62 69)(8 63 70)(9 59 141)(10 60 142)(11 57 143)(12 58 144)(13 84 77)(14 81 78)(15 82 79)(16 83 80)(21 32 55)(22 29 56)(23 30 53)(24 31 54)(25 36 40)(26 33 37)(27 34 38)(28 35 39)(41 119 116)(42 120 113)(43 117 114)(44 118 115)(45 112 52)(46 109 49)(47 110 50)(48 111 51)(65 136 127)(66 133 128)(67 134 125)(68 135 126)(85 131 138)(86 132 139)(87 129 140)(88 130 137)(89 95 121)(90 96 122)(91 93 123)(92 94 124)(97 105 104)(98 106 101)(99 107 102)(100 108 103)
(1 68 141)(2 142 65)(3 66 143)(4 144 67)(5 131 83)(6 84 132)(7 129 81)(8 82 130)(9 73 135)(10 136 74)(11 75 133)(12 134 76)(13 86 72)(14 69 87)(15 88 70)(16 71 85)(17 128 57)(18 58 125)(19 126 59)(20 60 127)(21 49 108)(22 105 50)(23 51 106)(24 107 52)(25 96 113)(26 114 93)(27 94 115)(28 116 95)(29 104 47)(30 48 101)(31 102 45)(32 46 103)(33 43 123)(34 124 44)(35 41 121)(36 122 42)(37 117 91)(38 92 118)(39 119 89)(40 90 120)(53 111 98)(54 99 112)(55 109 100)(56 97 110)(61 77 139)(62 140 78)(63 79 137)(64 138 80)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)

G:=sub<Sym(144)| (1,116)(2,113)(3,114)(4,115)(5,106)(6,107)(7,108)(8,105)(9,35)(10,36)(11,33)(12,34)(13,112)(14,109)(15,110)(16,111)(17,117)(18,118)(19,119)(20,120)(21,129)(22,130)(23,131)(24,132)(25,142)(26,143)(27,144)(28,141)(29,137)(30,138)(31,139)(32,140)(37,57)(38,58)(39,59)(40,60)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(61,102)(62,103)(63,104)(64,101)(65,96)(66,93)(67,94)(68,95)(69,100)(70,97)(71,98)(72,99)(89,126)(90,127)(91,128)(92,125)(121,135)(122,136)(123,133)(124,134), (1,77)(2,78)(3,79)(4,80)(5,58)(6,59)(7,60)(8,57)(9,72)(10,69)(11,70)(12,71)(13,73)(14,74)(15,75)(16,76)(17,82)(18,83)(19,84)(20,81)(21,90)(22,91)(23,92)(24,89)(25,103)(26,104)(27,101)(28,102)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,105)(38,106)(39,107)(40,108)(41,112)(42,109)(43,110)(44,111)(45,116)(46,113)(47,114)(48,115)(49,120)(50,117)(51,118)(52,119)(53,124)(54,121)(55,122)(56,123)(61,141)(62,142)(63,143)(64,144)(65,140)(66,137)(67,138)(68,139)(85,134)(86,135)(87,136)(88,133)(125,131)(126,132)(127,129)(128,130), (1,68,59)(2,60,65)(3,66,57)(4,58,67)(5,138,80)(6,77,139)(7,140,78)(8,79,137)(9,19,126)(10,127,20)(11,17,128)(12,125,18)(13,86,61)(14,62,87)(15,88,63)(16,64,85)(21,49,100)(22,97,50)(23,51,98)(24,99,52)(25,122,42)(26,43,123)(27,124,44)(28,41,121)(29,105,47)(30,48,106)(31,107,45)(32,46,108)(33,117,91)(34,92,118)(35,119,89)(36,90,120)(37,114,93)(38,94,115)(39,116,95)(40,96,113)(53,111,101)(54,102,112)(55,109,103)(56,104,110)(69,129,81)(70,82,130)(71,131,83)(72,84,132)(73,135,141)(74,142,136)(75,133,143)(76,144,134), (1,73,19)(2,74,20)(3,75,17)(4,76,18)(5,64,71)(6,61,72)(7,62,69)(8,63,70)(9,59,141)(10,60,142)(11,57,143)(12,58,144)(13,84,77)(14,81,78)(15,82,79)(16,83,80)(21,32,55)(22,29,56)(23,30,53)(24,31,54)(25,36,40)(26,33,37)(27,34,38)(28,35,39)(41,119,116)(42,120,113)(43,117,114)(44,118,115)(45,112,52)(46,109,49)(47,110,50)(48,111,51)(65,136,127)(66,133,128)(67,134,125)(68,135,126)(85,131,138)(86,132,139)(87,129,140)(88,130,137)(89,95,121)(90,96,122)(91,93,123)(92,94,124)(97,105,104)(98,106,101)(99,107,102)(100,108,103), (1,68,141)(2,142,65)(3,66,143)(4,144,67)(5,131,83)(6,84,132)(7,129,81)(8,82,130)(9,73,135)(10,136,74)(11,75,133)(12,134,76)(13,86,72)(14,69,87)(15,88,70)(16,71,85)(17,128,57)(18,58,125)(19,126,59)(20,60,127)(21,49,108)(22,105,50)(23,51,106)(24,107,52)(25,96,113)(26,114,93)(27,94,115)(28,116,95)(29,104,47)(30,48,101)(31,102,45)(32,46,103)(33,43,123)(34,124,44)(35,41,121)(36,122,42)(37,117,91)(38,92,118)(39,119,89)(40,90,120)(53,111,98)(54,99,112)(55,109,100)(56,97,110)(61,77,139)(62,140,78)(63,79,137)(64,138,80), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)>;

G:=Group( (1,116)(2,113)(3,114)(4,115)(5,106)(6,107)(7,108)(8,105)(9,35)(10,36)(11,33)(12,34)(13,112)(14,109)(15,110)(16,111)(17,117)(18,118)(19,119)(20,120)(21,129)(22,130)(23,131)(24,132)(25,142)(26,143)(27,144)(28,141)(29,137)(30,138)(31,139)(32,140)(37,57)(38,58)(39,59)(40,60)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(61,102)(62,103)(63,104)(64,101)(65,96)(66,93)(67,94)(68,95)(69,100)(70,97)(71,98)(72,99)(89,126)(90,127)(91,128)(92,125)(121,135)(122,136)(123,133)(124,134), (1,77)(2,78)(3,79)(4,80)(5,58)(6,59)(7,60)(8,57)(9,72)(10,69)(11,70)(12,71)(13,73)(14,74)(15,75)(16,76)(17,82)(18,83)(19,84)(20,81)(21,90)(22,91)(23,92)(24,89)(25,103)(26,104)(27,101)(28,102)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,105)(38,106)(39,107)(40,108)(41,112)(42,109)(43,110)(44,111)(45,116)(46,113)(47,114)(48,115)(49,120)(50,117)(51,118)(52,119)(53,124)(54,121)(55,122)(56,123)(61,141)(62,142)(63,143)(64,144)(65,140)(66,137)(67,138)(68,139)(85,134)(86,135)(87,136)(88,133)(125,131)(126,132)(127,129)(128,130), (1,68,59)(2,60,65)(3,66,57)(4,58,67)(5,138,80)(6,77,139)(7,140,78)(8,79,137)(9,19,126)(10,127,20)(11,17,128)(12,125,18)(13,86,61)(14,62,87)(15,88,63)(16,64,85)(21,49,100)(22,97,50)(23,51,98)(24,99,52)(25,122,42)(26,43,123)(27,124,44)(28,41,121)(29,105,47)(30,48,106)(31,107,45)(32,46,108)(33,117,91)(34,92,118)(35,119,89)(36,90,120)(37,114,93)(38,94,115)(39,116,95)(40,96,113)(53,111,101)(54,102,112)(55,109,103)(56,104,110)(69,129,81)(70,82,130)(71,131,83)(72,84,132)(73,135,141)(74,142,136)(75,133,143)(76,144,134), (1,73,19)(2,74,20)(3,75,17)(4,76,18)(5,64,71)(6,61,72)(7,62,69)(8,63,70)(9,59,141)(10,60,142)(11,57,143)(12,58,144)(13,84,77)(14,81,78)(15,82,79)(16,83,80)(21,32,55)(22,29,56)(23,30,53)(24,31,54)(25,36,40)(26,33,37)(27,34,38)(28,35,39)(41,119,116)(42,120,113)(43,117,114)(44,118,115)(45,112,52)(46,109,49)(47,110,50)(48,111,51)(65,136,127)(66,133,128)(67,134,125)(68,135,126)(85,131,138)(86,132,139)(87,129,140)(88,130,137)(89,95,121)(90,96,122)(91,93,123)(92,94,124)(97,105,104)(98,106,101)(99,107,102)(100,108,103), (1,68,141)(2,142,65)(3,66,143)(4,144,67)(5,131,83)(6,84,132)(7,129,81)(8,82,130)(9,73,135)(10,136,74)(11,75,133)(12,134,76)(13,86,72)(14,69,87)(15,88,70)(16,71,85)(17,128,57)(18,58,125)(19,126,59)(20,60,127)(21,49,108)(22,105,50)(23,51,106)(24,107,52)(25,96,113)(26,114,93)(27,94,115)(28,116,95)(29,104,47)(30,48,101)(31,102,45)(32,46,103)(33,43,123)(34,124,44)(35,41,121)(36,122,42)(37,117,91)(38,92,118)(39,119,89)(40,90,120)(53,111,98)(54,99,112)(55,109,100)(56,97,110)(61,77,139)(62,140,78)(63,79,137)(64,138,80), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144) );

G=PermutationGroup([[(1,116),(2,113),(3,114),(4,115),(5,106),(6,107),(7,108),(8,105),(9,35),(10,36),(11,33),(12,34),(13,112),(14,109),(15,110),(16,111),(17,117),(18,118),(19,119),(20,120),(21,129),(22,130),(23,131),(24,132),(25,142),(26,143),(27,144),(28,141),(29,137),(30,138),(31,139),(32,140),(37,57),(38,58),(39,59),(40,60),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,88),(61,102),(62,103),(63,104),(64,101),(65,96),(66,93),(67,94),(68,95),(69,100),(70,97),(71,98),(72,99),(89,126),(90,127),(91,128),(92,125),(121,135),(122,136),(123,133),(124,134)], [(1,77),(2,78),(3,79),(4,80),(5,58),(6,59),(7,60),(8,57),(9,72),(10,69),(11,70),(12,71),(13,73),(14,74),(15,75),(16,76),(17,82),(18,83),(19,84),(20,81),(21,90),(22,91),(23,92),(24,89),(25,103),(26,104),(27,101),(28,102),(29,93),(30,94),(31,95),(32,96),(33,97),(34,98),(35,99),(36,100),(37,105),(38,106),(39,107),(40,108),(41,112),(42,109),(43,110),(44,111),(45,116),(46,113),(47,114),(48,115),(49,120),(50,117),(51,118),(52,119),(53,124),(54,121),(55,122),(56,123),(61,141),(62,142),(63,143),(64,144),(65,140),(66,137),(67,138),(68,139),(85,134),(86,135),(87,136),(88,133),(125,131),(126,132),(127,129),(128,130)], [(1,68,59),(2,60,65),(3,66,57),(4,58,67),(5,138,80),(6,77,139),(7,140,78),(8,79,137),(9,19,126),(10,127,20),(11,17,128),(12,125,18),(13,86,61),(14,62,87),(15,88,63),(16,64,85),(21,49,100),(22,97,50),(23,51,98),(24,99,52),(25,122,42),(26,43,123),(27,124,44),(28,41,121),(29,105,47),(30,48,106),(31,107,45),(32,46,108),(33,117,91),(34,92,118),(35,119,89),(36,90,120),(37,114,93),(38,94,115),(39,116,95),(40,96,113),(53,111,101),(54,102,112),(55,109,103),(56,104,110),(69,129,81),(70,82,130),(71,131,83),(72,84,132),(73,135,141),(74,142,136),(75,133,143),(76,144,134)], [(1,73,19),(2,74,20),(3,75,17),(4,76,18),(5,64,71),(6,61,72),(7,62,69),(8,63,70),(9,59,141),(10,60,142),(11,57,143),(12,58,144),(13,84,77),(14,81,78),(15,82,79),(16,83,80),(21,32,55),(22,29,56),(23,30,53),(24,31,54),(25,36,40),(26,33,37),(27,34,38),(28,35,39),(41,119,116),(42,120,113),(43,117,114),(44,118,115),(45,112,52),(46,109,49),(47,110,50),(48,111,51),(65,136,127),(66,133,128),(67,134,125),(68,135,126),(85,131,138),(86,132,139),(87,129,140),(88,130,137),(89,95,121),(90,96,122),(91,93,123),(92,94,124),(97,105,104),(98,106,101),(99,107,102),(100,108,103)], [(1,68,141),(2,142,65),(3,66,143),(4,144,67),(5,131,83),(6,84,132),(7,129,81),(8,82,130),(9,73,135),(10,136,74),(11,75,133),(12,134,76),(13,86,72),(14,69,87),(15,88,70),(16,71,85),(17,128,57),(18,58,125),(19,126,59),(20,60,127),(21,49,108),(22,105,50),(23,51,106),(24,107,52),(25,96,113),(26,114,93),(27,94,115),(28,116,95),(29,104,47),(30,48,101),(31,102,45),(32,46,103),(33,43,123),(34,124,44),(35,41,121),(36,122,42),(37,117,91),(38,92,118),(39,119,89),(40,90,120),(53,111,98),(54,99,112),(55,109,100),(56,97,110),(61,77,139),(62,140,78),(63,79,137),(64,138,80)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)]])

80 conjugacy classes

class 1 2A···2G3A3B3C3D3E3F4A···4H6A···6N6O···6AP12A···12P
order12···23333334···46···66···612···12
size11···11166669···91···16···69···9

80 irreducible representations

dim1111222333
type++++-+
imageC1C2C2C4S3Dic3D6He3⋊C2He33C4C2×He3⋊C2
kernelC22×He33C4C2×He33C4C23×He3C22×He3C2×C62C62C62C23C22C22
# reps16184161241612

Matrix representation of C22×He33C4 in GL7(𝔽13)

12000000
01200000
00120000
00012000
0000100
0000010
0000001
,
12000000
01200000
00120000
00012000
00001200
00000120
00000012
,
1000000
0100000
0010000
0001000
0000300
0000001
00002410
,
1000000
0100000
0010000
0001000
0000900
0000090
0000009
,
01200000
11200000
00012000
00112000
00003110
0000009
00002410
,
0100000
1000000
0008000
0080000
0000349
0000010
00002410

G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,2,0,0,0,0,0,0,4,0,0,0,0,0,1,10],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,9],[0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,3,0,2,0,0,0,0,1,0,4,0,0,0,0,10,9,10],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,0,0,0,3,0,2,0,0,0,0,4,1,4,0,0,0,0,9,0,10] >;

C22×He33C4 in GAP, Magma, Sage, TeX

C_2^2\times {\rm He}_3\rtimes_3C_4
% in TeX

G:=Group("C2^2xHe3:3C4");
// GroupNames label

G:=SmallGroup(432,398);
// by ID

G=gap.SmallGroup(432,398);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,f*c*f^-1=c^-1,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽